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A new acridine derivative as a fluorescent chemosensor for
zinc ions in an 100% aqueous solution: a comparison

of binding property with anthracene derivative
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Abstract—A new acridine derivative was synthesized as a fluorescent chemosensor for Zn2+ in an 100% aqueous solution. Com-
pound 1 displayed a selective CHEF (chelation enhanced fluorescence) effect with Zn2+, on the other hand, a similar anthracene
derivative 2 did not display any significant change with the metal ions examined.
� 2006 Elsevier Ltd. All rights reserved.
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Sensors based on ion-induced changes in fluorescence
appear to be particularly attractive due to the simplicity
and high detection limit of fluorescence.1 Acridine deriv-
atives have been actively utilized as DNA intercalators,2

and also as drugs for anticancer3 or leishmaniases.4 On
the contrary, there has been a paucity of papers in which
acridine derivatives have been used as fluorescent
chemosensors. Mainly chiral acridino-18-crown-6 deriv-
atives have been reported by a few groups.5 As far as we
are aware of, any acridine derivative bearing ligand on
the 4,5-position via methylene linkage has not been
studied as fluorescent chemosensors for metal ions.
Herein, we report a new acridine derivative which shows
a large CHEF (chelation enhanced fluorescence) effect
with Zn2+ in an 100% aqueous solution. A similar
anthracene derivative 2 was synthesized and the binding
affinities toward metal ions were compared produc-
tively. Compound 1 was further utilized as an INH logic
gate using H+ and OH� as two inputs.

4,5-Bis-bromomethylacridine 3 was prepared following
a published procedure.6 The treatment of 4,5-bis-
bromomethylacridine 3 with N,N 0-dimethyl-N-(3-
methylaminopropyl)propane-1,3-diamine in anhydrous
chloroform in the presence of K2CO3 and subsequent
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purification on basic alumina column using CH2Cl2–
MeOH (99:1, v/v) as an eluent gave compound 17

in a 50% yield. Adopting the similar procedure to
1,8-bis(bromomethyl)anthracene,8 compound 29 was
obtained in a 46% yield (see Scheme 1).

The perchlorate salts of Ca2+, Cd2+, Co2+, Cs+, Cu2+,
Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+, Rb+, and
Zn2+ ions were used to evaluate the metal ion binding
properties of compounds 1 and 2. Figures 1 and 2
explain the fluorescent emission changes of 1 (3 lM)
and 2 (3 lM), respectively upon the addition of various
metal ions at pH 7.4. For the acridine derivative 1, a
K2CO3/CHCl3
46%
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Scheme 1. Syntheses of compounds 1 and 2.

mailto:jyoon@ewha.ac.kr
mailto:kmkswamy@yahoo.com


8130 M. S. Park et al. / Tetrahedron Letters 47 (2006) 8129–8132
selective CHEF effect was observed upon the addition of
Zn2+, although a relatively small CHEF effect was
observed with Cd2+. On the other hand, there was not
a significant change when various metal ions were added
to compound 2. The hydrogen at the 9-position of
anthracene in compound 2 may sterically prohibit the
Figure 1. Fluorescent emission changes of 1 (3 lM) upon the addition
of various metal ions (100 equiv) at pH 7.4 (0.02 HEPES) (excitation at
356 nm) (excitation and emission slit: 5 nm).

Figure 2. Fluorescent emission changes of 2 (3 lM) upon the addition
of various metal ions (100 equiv) at pH 7.4 (0.02 M HEPES)
(excitation at 368 nm) (excitation and emission slit: 5 nm).

Figure 3. Fluorescent changes of compound 1 (10 lM) with Zn2+

(200 equiv) in 0.02 M HEPES (pH 7.4).
binding with metal ions. There are two possible reasons
for the different binding affinities of 1 and 2; the steric
problem induced by 9-H of anthracene and the addi-
tional nitrogen on the acridine moiety. Figure 3 demon-
strates the fluorescent change of 1 upon the addition of
Zn2+ and the possible binding mode. The nitrogen on
the acridine moiety can participate in the binding with
Zn2+, which can induce the fluorescent increase. The
CHEF effect with Zn2+ can be also explained by the
blocking of the PET (photo-induced electron transfer)
process from the benzylic nitrogens.

Zn2+ ion is an essential component of many enzymes,
and plays important roles in maintaining the key struc-
tural features of gene transcription proteins.10 Also, the
role of Zn2+ in neurobiology has received significant
attention.11 In this regard, considerable efforts have
been devoted to the development of fluorescent chemo-
sensors for Zn2+ ion.12 Our acridine derivative 1 can be
Figure 4. Fluorescent titrations of compound 1 (5 lM) with Zn2+ at
pH 9 (0.05 M CHES) (excitation at 356 nm) (excitation and emission
slit: 5 nm).

Figure 5. Fluorescent changes of compound 1 (5 lM) with Zn2+

(10 equiv) in the absence or presence of Ca2+ (100 equiv) and Mg
(100 equiv) at pH 9 (0.05 M CHES) (excitation at 356 nm) (excitation
and emission slit: 5 nm).



Figure 6. Fluorescence spectra of compound 1 (3 lM) in 0.01 M NaCl, truth table and INH logic scheme (excitation at 356 nm, excitation and
emission slit: 5 nm) (pH was adjusted by the addition of 0.01 M NaOH and HCl).
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also considered as a potential fluorescent chemosensor
for Zn2+ since it displays a selective CHEF effect with
Zn2+ in a 100% aqueous solution.

Fluorescence titration experiment was first tried out at
pH 7.4; however, precipitation of Zn2+ occurred at high
concentrations (>1000 equiv). The fluorescent titration
was repeated at pH 9 (0.05 M CHES) as shown in Fig-
ure 4 and the association constant was calculated as
90,600 M�1 (error <15%).13 There was a red shift
(440–456 nm) upon the addition of Zn2+ and the overall
emission change was over 3.5-fold. Obviously, the asso-
ciation constant at pH 9 should be much larger than that
at pH 7.4, which can be attributed to the partial proton-
ation of the ligand nitrogens at pH 7.4. The emission
intensities of 1 (5 lM) with 10 lM Zn2+ in the presence
of 100 lM of Ca2+ and Mg2+ ions were as same as that
using 10 lM Zn2+ alone (±5%) (Fig. 5). The relative
quantum yields were determined using 9,10-diphenyl-
anthracene in degassed hexane (U = 0.96). The relative
quantum yield of 1 at pH 9 (0.05 M HEPES) was calcu-
lated as 0.0417 and that in the presence of Zn2+

(10 equiv) was 0.117.

Recently, a remarkable progress has been achieved in
the development of molecular logic gate based on the
fluorescent sensor.14 Among the various logic gates, an
Inhibit (INH) logic gate can be interpreted as a particu-
lar integration of an AND and a NOT logic gate, where
the output signal is inhibited by one of the active inputs.
As explained in Figure 6, our system can be applied to
an INH logic function using H+ and OH� as two inputs.
Obviously, in our case, two-input INH can be con-
structed using OH� input 1 and either H+ or Zn2+ as
input 2 and fluorescence as an output. Also, an AND
gate can be easily applied by using H+ and Zn2+ as
two different inputs and fluorescence as an output.

In conclusion, a new acridine derivative was synthesized
as a fluorescent chemosensor for Zn2+ in an 100% aque-
ous solution. Compound 1 displayed a selective CHEF
(chelation enhanced fluorescence) effect with Zn2+, on
the other hand, a similar anthracene derivative 2 did
not display any significant change with the metal ions
examined.
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